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Wave-energy extraction by a submerged cylindrical 
resonant duct 

By M. J. SIMON 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge 

(Received 14 May 1980) 

A cylindrical duct absorbing energy from incident surface waves is considered. The 
asymptotic properties of the scattering and radiation potentials are determined, to 
yield the hydrodynamic quantities on which the energy absorption characteristics of 
the duct can be shown to depend. It is shown that it is possible to tune the resonant 
response of the duct to absorb the maximum theoretical energy a t  a given frequency. 
Cnrves are presented showing the variation of energy absorption and the amplitude 
of the duct response with frequency for various depths of submergence and various 
tuning frequencies. 

1. Introduction 
I n  a recent paper in the Journal of Fluid Mechanics, Lighthill described analyses 

relevant to the absorption of wave energy by submerged resonant ducts, with par- 
ticular reference to the programme being pursued by the Design and Projects Division 
of Vickers, Ltd. This programme is investigating a number of different design con- 
figurations based on the idea that submerged devices could more easily survive the 
effects of local storms than surface devices, and that a submerged device could extract 
a significant fraction of the incident power if designed to resonate a t  a suitable fre- 
quency and to  have a broad enough frequency response. These ideas lead to  the 
resonant duct, which has the added advantage that a device incorporating this 
principle has the minimum of moving parts, simply those associated directly with 
power take-off. 

The original concept of the engineering design (Lighthill 1979), based on the 
resonant duct, has been modified for the reason that the large air volume that was 
needed to avoid a high pneumatic stiffness produced excessive structure and mooring 
costs. Also the need for rectification of the duct oscillations (which was originally 
achieved by an ‘overtopping’ system) is currently obviated in the design by using a 
Wells air-turbine. (This turbine has the interesting property that its direction of 
rotation is independent of the direction of the air flow.) 

Thus the present design can be represented schematically in figure I .  The intro- 
duction of the mouth-downwards duct greatly reduces the pneumatic stiffness in the 
device, and allows a much more compact structure than the original concept. Also, 
the forcing pressure at  the mouth of the downwards duct is much smaller than a t  the 
upwards duct, and so the hydrodynamic interaction of the device (when extracting 
energy or passive) with the incident ocean swell is principally just that  of an upward- 
facing duct. It is this aspect of device performance which this paper is to  describe. 
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FIGURE 1.  Schematic diagram of the Vickers twin oscillating water-column ware-energy dcvtcc. 

The analyses presented in Lighthill (1979) are two-dimensional, in that the device 
is thought of as being of very large dimension parallel to the wave crests; the very 
powerful tools of complex analysis can then be applied to give exact values for the 
important hydrodynamic quantities. Whereas this idealization may have much in 
common with a closely spaced row of discrete devices, and with tests of an isolated 
device in a narrow wave tank, there is much to be learned from an analysis for a single 
device; further, if a row of devices is envisaged where the spacing is comparable to the 
wavelength of the incident swell, then in order to study the interactions between 
devices it is useful to know, for example, the scattering of an incident wave from a 
single device. 

Although an exact analysis of even the simplest truly three-dimensional configura- 
tion seems unattainable, it proved possible to extend the approximate variational 
technique of Evans & Morris (1972a, b )  to solve the problem of the scattering from an 
idealized duct. This yields the scattering coefficients and the ‘ pressure-amplification 
factor’. The radiation potential (that is, the solution when there is no  incident wave, 
and flow in the duct generates radiating waves) is simply related to the scattering 
potential by a reciprocal theorem (Newman 1962). This is pursued in $8, giving the 
‘radiation damping coefficient’. The ‘added mass’ is a combination of two terms, 
one of which is obtained in $ 9  using the Kramers-Kronig relations, and the other 
term, an infinite-frequency contribution, is obtained by inverting an integral equation 
in $ 10. Curves of the quantities which arise in the scattering and radiation problems 
are presented and discussed in $ 11, and using these results the energy absorption 
properties of the duct are computed and shown in 5 12, 13. 

This whole analysis is performed for the case where the ocean is infinitely cleep; 
strictly this is applicable provided the wavelength is less than about 3.5 times the 
ocean depth. The complementary study in finite depth is considered in Thomas 
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(1981), where the radiation problem is solved first, in contrast to the present paper. 
This solution yields the radiation damping and the added mass, and as expected 
these quantities agree with the present analysis in the limit as the depth becomes 
large. Thomas also uses the reciprocal theorem, but now to derive the exciting force, 
a property of the scattering problem equivalent to the pressure-amplification factor. 
This different method of solution is available in the finite-depth case because infinite 
matrix equations replace the integral equations solved here. The different character 
of the energy-absorption characteristics in his paper is due mainly to use of an adjust- 
able spring constant instead of the (fixed) gravitational stiffness of the Vickers' device. 

Part 1. The scattering problem 

2. Formulation and statement of the problem 
A circular duct of radius a is submerged a depth h under the surface of infinite 

fluid on which plane small-amplitude surface waves of a single frequency w are 
propagating. The motion is assumed linear and irrotational. Axes (z, y, z )  and ( r ,  0, x )  
are chosen, with z measured downwards from the undisturbed free surface, IC and 
0 = 0 being in the direction of wave propagation, so that the duct is modelled as 

To start with, only the scattering of surface waves by the duct is considered; the 
potential due to  an oscillating flow in the duct can be superposed later. Thus the 
condition that there is no flow at great depths in the duct can be imposed for the 
scattering problem. 

r = a ,  h < x < 03. 

Potentials will be written in the form 

Re - eiWt 0 , r: 1 
where 2 d  is the crest-to-trough height of the waves. Thus the potential of wares 
incident from x = - 03 is 

which can be split into partial waves as 

i co 

J,(Kr) + 2 C ( -i)nJn(Kr)cos(nO) , 
n = l  

where J, is the Bessel function of order n (Abramowitz & Stegun 1964). 
The form (3)  suggests writing 

m 

CD = @ I + @ , " =  Q0+2  C ( - i )n$5n7 
n = l  

(3) 

where $n is proportional to cos (nB), and satisfies Laplace's equation in the fluid, with 
the free-surface condition, namely 

and 
0 Z Q n  = 0 (5a )  

(6 h )  ( z+h7)$5f i=0  a on z = O ,  
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together with the boundary conditions on the body, a t  large depth, and at  the centre 

a 
-$, = 0 at  r = u, x :> h; ( 6 a )  

( 6 b )  

ar 

z 
ar 

$, and - $, are continuous a t  r := a ,  z < h;  

$,+O as x + c o  for r > a ;  (6c)  

$n is bounded a t  r = 0. ( G d )  

(7 )  

Henceforward the problem for $, will be described as the 'nth mode', charac- 

To impose uniqueness on the solution there must be a radiation condition 

$;7 = qby8 - tA7(Kr)  e-Kz cos (no) N outgoing waves as r +co. 

terized by cos (no) dependence. Solutions of ( 5 a ,  h )  are 

and 
e-RH(nI)(Kr)  cos @e), e-KzH::)(Kr)  cos (no) 

M ( k ,  z )  I,(kr) cos (no), M ( k ,  z )  K,(kr)  ('0s (no) ( k  > 0 ) ,  ( 8 b )  

where H:;) and H g )  are Hankel functions which represent incoming and outgoing 
circular wai-es respectively, and 

J,(Kr) = + H f ) ( K r )  + i I p ( K r )  (9) 

is thus the r-dependence of a circular standing wave, with no net transport of energy 
radially. Also I,,, K ,  are modified Bessel functions and M ( k , z ) ,  a function which 
satisfies the free-surface condition ( 5 b ) ,  is given by 

M ( k ,  z )  = k cos ( k z )  - Ksin(1cz). (10) 

The pair ( 8 b )  of solutions for any k > 0, represent disturbances local in r ,  and so a 
linear combination of such can be used to satisfy tho boundary conditions a t  r = a. 
Thiis Q,t see (1.10) can be written 

where ( 7 )  has been used in the former relation; in the latter the condition of no net 
flow in the duct is implicit, and ( G d )  has been used. 

It will be seen that A, is the scattering amplitude of the nth mode, and C, is effec- 
tively the amplitude of the standing wave in r < a ;  these quantities are determined 
with high accuracy by the variational technique described in the next section. Since 
the incident wave of the nth mode, J,(Kr) e-Kz cos (no), constitutes an exact balance 
betwcen incoming and outgoing energy flux, the full solution must have this feature 
also. Noting that (9) gives 

J,,(Kr) +AnIYl$)(Kr) = &[H\;)(Kr) + (2A,+ I)H(;)(Kr)1,  (12) 

[ 2 A , , + I I  = 1 forallw. (13) 

this requircs 
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The most important aspect of the scattering solution is the fact that it supplies 
tlie driving pressures for the motions in the duct from which energy is extracted. For 
a narrow duct (and, to  a first approximation, for wider ducts) the amplitude of the 
driving pressure is simply the amplitude of the pressure fluctuations a t  the duct 
mouth; but in general will be this quantity multiplied by a factor KA (complex to 
include modification of amplitude and phase). This driving pressure is just that found 
‘in the depths’ of the duct, or in practice a t  least one duct diameter below the mouth. 
Hence KA can be defined as 

(14) 
excess pressure sensed in the depths of the duct 

K -  
A - excess pressure at  r = O ,  z = h if the duct were absent’ 

where excess pressure means excess over the hydrostatic distribution. This factor is 
denoted by K e-’” in Lighthill (1979) and is the most important result of the deter- 
mination of the scattering potential. 

The excess pressure is given by 

p,, = -piw@, (15) 

(where p is the ‘uniform’ density of the ocean), and so 

1cA = (lim @ ) / ( @ I  a t  r = 0, x = h)  = eK1’ lim @, (16) 
c+m z--* m 
r i a  r i a  

Now, observing that any solution of Laplace’s equation (5a )  in a tube must average 
out across the tube at  large distances along the length, and that the average of 
cos (no) in 0 6 0 < 2n is zero for n b 1 ,  (16) becomes 

r < u  

So only the n = 0 mode contributes to KA. (Similarly in the radiation problem, the 
solution is independent of 8 because the forcing volume flow must be.) It is thus 
fortunate that only this mode needs to be considered for KA,  and later for the radia- 
tion damping and added length (although for any future study of the interactions of 
devices all the A,, would be needed). 

Hencefonvard only the n = 0 niode will be considered and the suffix will be dropped 
from A,, BJE), C, and D,(k ) .  

From (11) 

and i t  is expected that this limit exists and is independent of r .  An extension to the 
vasiational method described in $ 6  provides a representation of this limit in terms of 
quantities wlculntccl in 9 6, and the accuracy of this estimate is checked in $ 7 .  

3. The integral equations 
The \rariational technique adopted here is not original; it was first used in the 

contcxt ofn.aterw~ves byMiles (1967,1971) andwasusedby Evans &Morris (1972a, b )  
to study reflcc$iori of surfaw waves by one or two plane 1-ertic:il bnrriers, in cases of‘ 
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normal and oblique incidence. The technique relies crucially on the following theorem, 
due to Havelock ( I  929)) for inverting expressions such as (1 I a, h ) :  
If 

is a suitably well-behaved function of x E (0, m), then 

and 

B(k)  = zJ mf(t) M ( k ,  t )  dt (k > 0). 
g o  

I n  what follows, trial functions which a,re estimates for 

will be used to  obtain close upper and lower bounds for a real positive quantity <, 
defined below, from which A and C can be found. 

From (11) 

where ,u = Ka, and so 

( 2 3 r ~ )  

- B(k)  R,(ka) = D(k)Il(ka) = ( 2 3 h )  
since by (Gu) 

Also 
P(z)  = 0 ( z  > h). (24) 

(using (231,  and the known values of the Wronskians involved, to simplify the form), 
and so 
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Substituting (2Gb) into (22 )  and using (24) gives 

where 

8-(t ,  z )  = [k(k2+ K2) B(ka)]-'2M(k, t )  M ( k ,  z )  dk ,  
!Om 

with 

and the kernel #-(t, x )  contains a logarithmic singularity a t  t = x .  

B(x) = 2x11(x)K,(x) 

Note that 

I R ( x )  > o for all x > 0, 
-+l as x-+co,  

N x as x+O. 

Similarly, substituting B(k) from (23a) into (25), and using (27) gives 

J h  
where 

where the exponential forces convergence of the integral. 
It is conjectured that F(z ) ,  G(z)  each has constant phase (cf. Garrett 1970); if a 

solution can be found using this assumption, then it is the only solution, by virtue 
of the uniqueness which imposition of the radiation condition (7) produces. More- 
over, it can be shown that the integral equations ( 2 8 )  and (30) have unique solutions 
when conditions (24) and (27) are applied. 

Writing 

(28) and (23a)  become 

It was previously stated that 5 is real; it is easily seen that this is self-consistent 
with (13) ,  (230)  and wi thf (z ) ,  g ( z )  being red.  It is shown that 5 is also positive in the 
nest section . 
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4. The variational approach 

close bounds for 6 when trial functions ~ ( z ) ,  @ ( z )  are used to approximatef(z), g(z ) .  
A dual-extremum principle will be constructed from (36) and (36) which will yield 

Note that 

for all real functions Z(z), and replacing Z(z) by f(z) shows that 5 3 0. Then if x ( z )  
approximates the shape off(z), take 

jm [k(k2+K2)B(ka)]-l ( j o h N ( t ) M ( k ' t ) d l ) 2 d k  
(40) 

0 

-c P-[x1 = ( IO'x(t) e-"tdt) 

Thus the functional 2- is an upper bound to  l/c for all functions ~ ( z ) ;  and, if ~ ( z )  
models the shape off(z) to within O ( E )  (so that Z(z) is this order), then L?-[x] is greater 
than 1/c by an amount that is O(c2) ,  and 5 can, as a result, be estimated closely using 
somewhat crude trial functions. 2- is also invariant under a scale transformation 
of x ( z ) *  

Similarly from (36), with @ ( z )  approximating the shape of g(z), 

which provides an upper bound for 6. 

5. Choice of trial €unctions 
It is desirable to minimize both 2 - [ x ]  and P+[$:] to obtain bounds for 6 that are 

close, which will be the case if x, @ contain the essential behaviour off, g .  Recalling 
that potential flow near a sharp lip has sqnare-root behaviour suggests that the 
properties 

( h - z ) & ~ ( z )  and ( z -  h)-b @(z)  are bounded near z = h, (42) 

must be incorporated into the trial functions. 
It also proves convenient to  form X ( z ) ,  $ ( z ) ,  where 
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By (42)) both X ( x )  and p(x) should have inverse square-root singularities a t  x = 1. 
The reason for the formation of X ,  can most easily be seen if the limit is considered 
as the duct radius becomes large; in this limit the scattering resembles the problem 
of normal incidence on a single vertical barrier for which the exact solution of Ursell 
(1 947) exists, giving (to within multiplicative constants) 

- 
(44) 

- x ( z )  = ( 1  -22 ) - t  ( 0  < x < l),  $ ( x )  = (9- l)-i ( 2  > 1) .  

The functionals 9- and 9+ can be rewritten in terms of x, $ respectively using 

x ( t )  M ( k ,  t )  dt = kh  

johx(t)  c K t d t  = h x(t)  cosh (Kht) dt, (458) 

$(t) M ( k ,  t )  dt = - $( t )  sin (kht)  dt - $(h) sin (kh), (45c) SP - 
and (42) implies that $(h) = 0. 

The bounds (40) and (41) then become 

where 7 = Kh, and 
Although Evans & Morris (1972a, b )  used simply (44)) in their associated scattering 

problems, certain features of the present problem result in poor accuracy if noimprove- 
ment is made to the trial functions. Thus use was made of 

= h/a = r /p .  

X ( z )  = (l-”)-t+pl+ylZ (0  < 2 < l ) ,  (47a) 

(47 b )  
- 
$ ( z )  = ( 2 2 -  1)-4 +p2+y2z-1 ( 1  < x < a). 

The bounds (46) are then in terms of integrals of tabulated functions, and are ratios 
of quadratic polynomials of the pi, yi, which can then be optimized, independently, 
to  obtain very close bounds for 6. Even without the yi present the bounds for 6 are 
never more than 2 yo apart for sensible values of the parameters 7 and p .  The yi are 
introduced to provide the best estimate possible of the pressure amplification factor, 
KAi, derived in the next section. 

Having found 5 (or close estimates for it), A and C are determined simply; (13) 
gives 

so 

and 

A = -ie-imsin(a), 

arg (C) = arg (iA) = - a 
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This phase angle a will be also shown to be the phase lag of the pressure-amplification 
factor KA = Ke-ia in the notation of Lighthill (1979). 

6. The estimate for KA 
Equations (18), (23) and (34) give 

where 

(50) 

and it  is expected that R(t,r,co) exists and is independent of r'. Evaluating the 
principal-value integral (50) by closing the contour in the upper half k plane, and 
taking the limit as z+m, the only contribution that remains is from the pole a t  
k = 0 ,  SO 

R(t,r,m) = (; - -K  ) (-f) = p t -  I ) ,  

and this is indeed independent of r .  Hence 

( K t -  l ) f ( t ) d t .  

(51) 

( 5 2 )  

The main difficulty with this extension to the variational method is that the shape 
of the function f ( z )  can be closely matched by varying PI, y1 to obtain the best Ion-el. 
bound for <, but the function is still determined only to O ( c ) .  Using (39) gives 

+ j; (1  -Kt)Z(t)dt , ( 5 3 )  i ;Ae' - Kt)  X ( t )  dt r 
rc. - _.__ ' - P2J1(P) e - K t X ( t )  dt 

and the second term in the bracket would be expected to  be O ( F ) .  The numerical 
evidence in $ 7  suggests, however, that  the errors are actually of smaller order than 
this and the estimate taken is thus 

(54) 

Thus KA4 has the phase of G n d ~ i c h ,  by (48), is just, --a. 
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FIGURE 2. A comparison between the results for the pressure amplification factor IRA\ given by 
the exact theory of Lighthill (1979), and the approximate technique employed in the present 
paper, adapted to the two-dimensional duct of width ?ah. (Lightliill dcnotes this amplification 
factor by K. )  Curves, exact theory; + , the corresponding approximate raltics. 

l K A l  5 PI IAl 
r ,  ' lr ial  function 

X(P) = (1-p2)-& 1.213778 1.477197 1.284690 0.168400 
~ ( p )  = ( 1  -p2)-6+al  (optimized) 1.161869 1,516126 1.275945 0.162968 
x(p) = ( I  - p 2 ) - : + a , + P I p  (optimized) 1.160975 1.516822 1.275793 0.162874 
dr(p) = ( j v -  l ) - * + a , f P 2 p - l  (optimized) - 1.516999 1.275754 0.102850 

TABLE 1. A comparison of estimates for I K A ~ ,  {, / C ] ,  IAl using diffcrcrit 
trial functions for parameter values p = 7 = 1.0. 

7. A check on the accuracy of the estimate for KA4 

The variational approach can be adapted to the two-dimensional problem for 
which the exact solution exists (Lighthill 1979). Equally well, this approach could be 
regarded as an extension of Evans S: Morris (1972b, symmetric part), except that  the 
barriers occupy h < x < co instead of 0 < z < h. The estimate is obtained froni (54) 
by considering the symmetric part of the incident wave, which involves replacing 
Jl(p) by sin (p) and dividing by 2 (since the synimetric part is only half the incident 
nave). Hcrc ,u dciiotes h' x ( g  tlrict width) = 7ru n~hcn the daclt ~ ~ i c l t h  is 7th. Figlire 2 
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FIGURE 3. A comparison between the results for the pressure-amplification factor JKAI given 
by tho variational technique of $6, and the experiments of Knott 8: Flower (1980), for different 
values of the ratio of mouth depth to duct radius. Curves, present theory; x ,  h/a = 0.62; 
0, h/a  = 1.34; A, h/a  = 2.18. 

PIT 

shows the approximations and the exact value (given by equations ( 1 5 4 4  and (165) 
of Lighthill 1979) for 0.1 < n 6 0.5 and different aspect ratios h/nh. The agreement 
is clearly excellent. 

Another check on the accuracy of (54) was to compare errors of the estimate for 
K A  with those of <, C ,  A as shown in table 1.  Examination of the figures (which are 
typical of the values a t  different 7, p) suggests that  KA has O(e2) errors, just as 6, 
A ,  C do. 

Finally, figure 3 shows experimental values determined in the wide wave tank a t  
Edinburgh compared with the values predicted by this theory (Knott & Flower 
1980). The experiments show a good agreement with theory, and confirm the qualita- 
tive behaviour of the pressure amplification, in that lKAl > 1 in general, and with 
the largest values occurring for ducts near the surface. 

This all suggests that (54) (with 47a) is a good estimate of KA, and all further work 
is based upon it.  Results of computations of C, A ,  and KA are displayed in 5 11. 

Having spent considerable time on one aspect of duct/swell interaction, when there 
is no flow in the duct, i t  is now possible to  proceed to  the situation where there is no 
incident wave but there is an oscillating flow in the duct .  Later the two solutions can 
be suitably superposed to model a real duct extracting energy from incident waves. 
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Part 2. The radiation problem 
8. The reciprocal theorem 

The potential due to an oscillating flow 

is sought. Without performing a complete solution to the problem, it is possible to 
use information from the scattering problem to determine the behaviour of the 
potential in the far field and in the depths of the duct. This is achieved by using 
Green's theorem, which gives 

for any suitably well-behaved harmonic functions Q,,, Q2 defined in and on a closed 
surface Y .  For this application of the theorem, Y is taken as the free surface, a 
cylindrical closure of large radius R, the fluid bottom a t  x = 00, and the walls of the 
duct. 

Q2 satisfy the free surface condition ( 5 b ) ,  and the boundary 
condition on the body and a t  large depth (Ga, c) ,  then the only contributions to (56) 
are from the cylindrical closure at  r = R and from the depths of the duct. Hence 

Assuming that 

assuming that at least one of 01, O2 is independent of 0. 
This will be applied to 

= scattering potential of n = 0 mode, 

@2 = radiation potential due to an oscillating flow Re pG Qeiut] . 
That is 

N {J,(Kr) + AHb2)(Kr))  e c K 2  as r + co, (58a)  

and 

(z-al?) as z + c o  for r < a. ( 5 9 b )  Q o2 - -- 
na2 

The dimensionless constants B, e must be determined; application of ( 5 7 )  immediately 

which is equivalent to a source strength Q' at r = 0 ,  z = h in the absence of the duct 
where h 

H =  ;iKe-'Q' (61 a )  
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(from Thorne 1953), and so 
Q' = QKA. 

This demonstrates the well-known reciprocity between the radiation and scattering 
problems: 

the effective source strength a t  r = 0, z = h in the absence of the duct 
the source strength in the depths of the duct 

the excess pressure in the depths of the duct 
the excess pressure a t  r = 0,  z = h in the absence of the duct' 

- - 

The volume flow ( 5 6 )  in the duct radiates energy away a t  a rate ( g d / w ) 2 1 3 , ,  where 

Defining the dimensionless radiation damping coefficient 0, such that the oscillating 
flow radiates energy away a t  a rate given by 

E, = BpwKDT1Q12, 
we see that 

Another application of (57) to 
0, = ecZT lKA12. 

gives 
= Q Z  = radiation potential due to the oscillating flow, 

9. The Kramers-Kronig relation 
It only remains to determine Re e. This part can be written 

A h  
R e C =  --€, 

a 
where 

ai = effective added length of duct. 

is a dimensionless ' added-mass ' term, due to the inertial response of the mass of 
water outside the duct. 

The potential ( 5 9 b ) ,  with (65) and (66), becomes 

2-h 
na 

where 
. na 

29 
f (0 )  = % ( w )  - z - w",(w). 
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Now the system that produces a potential Re [ ( g d l w )  @ eiwt] from an oscillating 
flow Re[(gd/w) Qei6’t] is clearly causal (and linear by the initial formulation), and so 
f ( w )  must be analytic in the lower half-plane, Im w < 0. As a result f ( w )  satisfies 

(since physical considerations suggest that f ( w )  tends to  a finite real limit as 
IwI +a). Taking the real part gives the Kramers-Kronig relation 

Now (63) implies that 0, is an odd function of w since E, is necessarily positive; hence 

or 

with quantities expressed as functions of ,u = aw2/g. This can be used very easily to 
generate values of ~(,uo)-%(co) for a given duct configuration (that is, for a given 
(T = h / a ) ,  since 0, contains the factor e-27 = e-zqa, so the integral can in practice be 
truncated at  ,u = 3/a.  Results of such a computation are displayed in 3 11. 

10. The infinite-frequency added-length problem 
Note that i(po) is still not completely determined since ,!(a) is required first. It 

turns out that i (m) is irrelevant for the frequency response of the duct in capturing 
energy, when the duct is assumed ‘tuned’ to a given frequency; but that  it does 
affect the length of duct necessary for such a tuning. 

The infinite-frequency problem is one where the free-surface condition becomes 

$ = O  on z = O ,  ( 7 2 )  

with the result that the added mass is half that of the associated anti-symmetric 
problem where the duct operates together with its mirror image in the free surface. 
The duct flows are in anti-phase and the far field is thus of dipole type. 

Write the infinite-frequency radiation potential as 

and the quantity desired from the problem is 



174 Jl. J .  S '  zmon 

By a similar process to that used in § 3, an integral equation can be formed in terms of 

and (74) can be manipulated as in the derivation of K-,l to give 

and 

with 

E(m) = --- t F ( t ) d t  
a a 2  2 fh '  

dk 
O0 sin ( k t )  sin (kz') s o kf7( ka) 

S(t ,z)  = 2 

and H as in (31).  S(t, z )  can be written 

h(ka) dk ,  
sin (kt) sin (kz) 

k2 S(t ,z)  = In If'zl - +- :lo 
where 

Z(x) = 2x -- 1 = (Il@) K1(x))-l- 2X) ( 7 6 b )  
(I& ) 

and the second term of X(t ,  z )  is not singular a t  t = a. 

Differentiating ( 7 5 b )  with respect to z gives 
The method adopted for the solution of (75) is essentially a Fourier decomposition. 

( 7 7 )  
sin (kt) cos (kz )  

where t has been replaced by h sin 8, z by h sin a, h/a by CT, and kh by 1 in the inner 
integral. Now F ( t )  has an inverse square-root singularity a t  t = h and so cos B F ( h  sin 6) 
is bounded as 8+7r/2. This suggests writing 

m 

r = l  
cosOF(hsin8) = C a,sin(2r- l )8 ,  (79) 

where all cosines are omitted since F( t )  is odd, and all even sines are omitted since i t  
is conjectured that no part of F ( t )  is regular a t  t = h. Making use of the results 

2 sin 8 cos(2r-1)a 
sin(2r-l)O d8 = 7r 

sin2 8 - sin2 a cos a 
and 

7T 
sin (2r  - 1) Osin (lsin 0) dO = -J2r-l(l), 

2 
gives 
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FIGURE 4. The infinite-frequency added-length coefficient i( co) plotted as a function of the aspect 
ratio c. For the three-dimensional case the mouth depth and added length of duct are ug and 
d(z) respectively (for duct radius a ) ,  wheroas they are d u  and di(z) for the two-dimensional case, 
where d is the duct width. Dashed line, asymptotic value for the three-dimensional case as 
u + a. 

Multiplying by cos a cos (2s - 1) c1 and integrating gives 

5 a, [ &rs+ a(2s - I )  1 - 2 ~ ~ , - , ( 1 )  J~~-,(Z) ( 8 2 )  
r = l  

Here the results 
7r 

cos(2r- 1)acos(2s- 1 ) a d a  = -&,s 4 (83a)  Soni2 
and 

cosacos(2s- l )acos( ls ina)da = 7r - (2s-  1)- JZS-l(O 
2 1 

are used. Thus the integral equation becomes the simultaneous linear equation (82), 

and can be written A 

( I + B ) a  = &el (84) 

where el is a vector with 1 in the first place and zeroes elsewhere, B is the symmetric 
matrix with components 

h 

and I is diagonal with elements, 1, Q, t ,  3, . . . . 
Note that ( 7 . 5 ~ )  and (79) imply 

(86) 
.7r 

%(m) = 0-- - &A1. 
2 

The first component a, of a is given to high accuracy even when the infinite matrix B 
is replaced by a mere 3 x 3 one, which gives a value differing by less than from 
the result using a 7 x 7 truncation, for all up to 6. 
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FIGCRE 5. The pressure-amplification factor lR~l plotted as a function of the dimensionless 
wavenumber ,u = Ka for different values of the dimensionless depth 7 = Kh. 

Figure 4 shows l(m) plotted against = h/a; and for comparison the two-dimen- 
sional infinite frequency added length is also shown, although here (T represents 
hlnh = depth/duct width. For the two-dimensional case exactly the same analysis 
can be applied with z(x) replaced by 

- 2x 
h,(x) = -. 

e x -  1 

The result of this calculation is indistinguishable in figure 4 from a computation of 
the exact value (using (114) and (174)  of Lighthill 1979), which confirms the accuracy 
of the method. There is little qualitative difference between the curves except that 
the two-dimensional values are somewhat larger. As --f 03, the three-dimensional 
added length is seen to be tending asymptotically to 0*6113a, the value given by 
Noble (1958) for the added length of an open pipe in infinite fluid, which is appropriate 
in this limit as the pipe moves away from the influence of the free surface. 

11. Results from the scattering and radiation problems 
The main points to emphasize here are the ways in which similarities and differences 

arise between the three-dimensional results and the two-dimensional exact solution 
of Lighthill (1079). 

Consider then the pressure-amplification factor lKd,,l, shown in figure 5 ,  plotted 
against ,u for different values of T .  This is equivalent to Lighthill, figure 6. A striking 
difference is revealed in that small immersion depths result in considerably enhanced 
amplifications over a significant range of values o f p ;  also, a t  greater than a certain 
depth the amplification becomes fairly insensitive t o  changes of depth or radius. This 
has important consequences for the design of a resonant-duct wave-energy device. 
These differences are also carrietl over to figure 6, which shows the radiation damping 
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FIGURE 6. The radiation damping coefficient D, plotted as a fiirictiori of the dimcrisionlcss 
wavenumber ,u = Ku for different values of' tlic dinierisioriless depth 7 = Kh. 
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FIGURE 7.  The pressure-amplificatiori factor IRA/ plotted as a furictiori of tlie diiiierisioiilcss 
wavenumber y = Ka for differcnt values of the aspect-ratio c = h/u.  

coefficient 0, computed from the curves of figure 6 using (64), for comparison with 
Lighthill, figure 13. 

Strictly speaking figures 5-10 represent a single bound on the quantities involred, 
but the numerical evidence of table 1 demonstrates that the errors betn eeii bounds 
are not detectable graphically. 

Figures 7 and 8 show IK-$l and 0, plotted against p = R a  for diffcrent values of the 
aspect-ratio (T = h / a .  (This represents a given device in monochromatic seas of 
varying frequency.) Vor larger aspect ratios the amplification varies niiicli less with 
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PIGIJRE 9. The phase angle ci plotted against the dimensionless wavenumber y = Ka for 
different aspect ratios. The quantities C, K A  and iA all 1iaJTe phase -a, and A has modulus 
given hy sin a. 

p than in the two-dimensional case (cf. Lighthill, figure 8). Also the very rapid decay 
of D, with increasing frequency is the reason why the Kramers-Kronig relation ( 7 1 )  
is so easy to put into practice. 

For the sake of completeness, figures 9 and 10 present the phase angle a and the 
standing-wave amplitude ICI, plotted for different aspect ratios. Notice that a is 

FIC:CRJ: 8. 'I'ho radiation damping coefficient D, plotted as a function of the dimensionless wave- 
nninbcr /L = Ka for different values of the aspect ratio r = h/a. 
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FIGURE 10. The modulus of the standing wave inside the duct, ICI, plotted against the dimen- 
sionless wavenumber p = Ka for different aspect ratios. 
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FIGURE 1 1 .  The added-length coefficient i plotted against the dimensionless wavenumber p = Ka 
for different aspect ratios. Dashed lines: the infinite-frequency values given by the method of § 10. 

always small and positive, as with the two-dimensional case, and that (ICl- 1)  bears 
a striking resemblance to Dr, although this seems to be coincidence. 

The major difference between two- and three-dimensions occurs in considering the 
added lengths. For in two dimensions the added length is nearly always less than its 
infinite-frequency value, except very close to zero frequency, where i t  tends to 
positive infinity, logarithmicully. Examination of figure 11 shows that there is a wide 
range of frequencies over which the added length is greater than the infinite-frequency 
value. Furthermore, this difference is large, particularly a t  fairly small values of CT 
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which the computations of § 12 suggest would be appropriate for a real wave-energy 
device. 

Another contrast in three dimensions is that  the zero-frequency limit gives finite 
added length, which can be understood in terms of the source-type far field which 
arises in this limit, whereas the two-dimensional source implies a fluid flow with 
logarithmically infinite kinetic energy. These differences can also be seen as conse- 
quences of the Kramers-Kronig relations (see Kotik & Mangulis 1962). Again, there 
are important consequences here in terms of device design, since the resonant fre- 
quency and the bandwidth of the frequency response both depend on the added 
length. It is exactly the variation with frequency of the large added length which 
allows the system to respond well to frequencies away from resonance. By contrast, a 
system with nearly constant inertia and stiffness is dominated a t  low frequencies by 
the stiffness, a t  high frequencies by the inertia, and only near resonance is there a 
balance between the two opposing trends; for a good bandwidth this balance must be 
nearly satisfied over a wide range of frequencies. The resonant duct has fixed (gravita- 
tional) stiffness, and so it is necessary to  employ the variation of the inertia, specifically 
using regions where the added length decreases with frequency. 

Part 3. The resonant duct as a wave-energy absorber 
12. Power absorption, tuning and bandwidth 

Combining (58b)  and (67) gives 

(88) 

(89) 

Q 
na2 

dD ,., e-7 KA - - ( z  - h + a,! - &ina2KDr) 

and so 

p,  N -piw e-T KA + pwQ 

Consider now an upwards duct in the form of a U-tube of constant cross-sectional 
area na2 (half of the device pictured schematically in figure 1 ), where the curve of the 
U-bend is wide, and where the internal air-water interface is a distance 2 measured 
along the duct from the mouth. On linear theory the oscillating flow (55) in the duct 
causes pressure fluctuations 

where 

at the interface; any ‘pneumatic stiffness’ is negligible because of the influence of 
the mouth-downwards duct. Equating (90) to the value of (89) a t  z - h  = 2 gives 

piwe-’ KA = pwQ ( +KD, + i (2+:;K-1]). 

As yet no energy extraction has been incorporated into the model; by analogy with 
(63) an energy extraction coefficient D, is introduced such that energy is extracted 
a t  a rate 
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from the volume flow ( 5 5 ) ,  as though the energy take-off process is strictly linear. 
Then (91) becomes 

Here any frictional losses are neglected; in practice a suitably rounded duct mouth 
would be needed to improve the device performance in larger-amplitude waves, since 
otherwise frictional dissipation (proportional to the cube of the amplitude) would 
dominate. 

The energy extraction rate (92) is then 

where (64) has been used to eliminate KA. Thus every feature of the scattering problem 
has disappeared from the energy absorption characteristics of the device. The response 
is seen to depend only on D, and !which are features of the radiation problem. 

The incident energy flux is 

(measured in watts per metre of frontage), and so the duct effectively captures energy 
over a frontage C, given by 

For a given duct configuration, in seas of a given frequency wo (and so K ,  p, 7, 0, 
and 2 are fixed), (96) can be maximized to unity by 

2 1 

U P a t  p = po  = awg/g. 
-+l--  = 01 

The former condition is that of resonance, that  the amplitude of the volume-flow 
fluctuations determined by (93) should be a maximum; the latter condition equates 
the capture of energy and the radiation of energy in new waves. 

The maximum of C, is thus 

as predicted by Evans (1976) for any axisymmetric device with one vertical degree of 
freedom. At frequencies other than the resonant frequency, C,, is given by 

if conditions (97) are applied and the coefficient D, is a constant. 
The device will be most cost-effective if it captures energy over a width as large as, 

or greater than, its diameter, and so considerable attention is focused on the quantity 
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FIGURE 12. The ratio of captiire width to duct diameter plotted against dimensionless wave- 
number ,u = Ka for a duct of aspect ratio cr = 1.0, for different values of tuning wavenumber 
,uo = Koa.  Dashed curve: the maximum capture width to diameter ratio 1 1 2 , ~ .  

which is maximized under (97) to  
1/2PO) 

and this tends to suggest that  the device should be tuned to  smallish values of po. To 
compare the effect of different tuning frequencies, values fro = 0.4, 0.8, 1-2  were used 
at a variety of different aspect ratios CT = hja, and the results displayed in the next 
section. 

Also of interest is the ratio between the amplitude of the response of the internal 
sirjwater interface, and the amplitude of the incident waves, given by 

because the linear theory is not strictly admissible should this quantity exceed, m y ,  3. 
It is worth noting at this stage that under the assumptions already made it is 

possible to incorporate a gradual taper or anti-taper into the duct, as in Lighthill 
(1979). Thus if the duct mouth still has radius a, but the cross-sectional area a t  a 
distance s from the mouth is 

A(s)  = A(O)/f(4 = na2/f(s) ,  (103) 

then (2 + al^- K-I) can be replaced by 

J o  

in equations (91), (93)) (94), (96) and (97). Also the second term in the denominator 
of (99) becomes 
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FIGURE 13. The ratio of the amplitude of the response in the duct to the wave height plotted 
against dimensionless wavenumber j~ = Ka for a duct of aspect ratio u = 1.0, for different 
values of tuning wavenumber po = Koa.  

and the amplitude ratio (102) becomes 

I Q I f ( W w  (106) 

It is clear from (105), (106) that the value of f(2) is crucial to the performance of 
the device, whereas the actual form of f ( s )  in between the mouth and the air/water 
interface, only modifies the duct length necessary for the appropriate tuning. With 
taper present the gravitational stiffness in the device is effectively 

g' = S f m ,  (107) 

and this proves very useful when f(2) c 1; that is, when some overall anti-taper has 
been incorporated. 

13. Results and discussion 
In  figure 12 the ratio of capture width to duct diameter C,/2a is presented for 

aspect ratio h/a = I, and different dimensionless tuning wavenumbers po = Koa 
= 0.4, 0.8, 1.2. For each tuning, the actual maximum of C,/2a is found at  a wave- 
number lower than the tuning wavenumber, but the values here are disappointing 
since Cw/2a is nearly always less than one. It is possible to achieve higher values of 
Cw/2a by tuning to wavenumbers that are smaller still, but figure 13 shows that the 
amplitudes of response in the duct necessary for such improved values become larger 
as ,uo decreases, invalidating linear theory. 

A rather different situation emerges on examining figures 14-17, representing 
results for smaller values of aspect ratio g = h/a = 0.6, 0.4. It is evident that as CT 
decreases the values of C,/2a improve, becoming closer to the maximum possible 
value 1/2p everywhere. There is an accompanying trend in the amplitude ratios 
which tend to increase if the tuning wavenumber is one of the larger values considered, 
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FIGURE 14. The captiire width to duct diameter ratio plotted against dimensionless wavenumber 
p = Ka for a duct of aspect ratio u = 0.6, for different values of tuning wavenumber po = K,a. 
Dashed curve: the maximum capture width to diameter ratio 1/2p. 
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FIGURE 15. The capture width to duct diameter ratio plotted against dimensionless wavenumber 
p = Ka for a duct of aspect ratio u = 0.4, for different values of tuning wavenumber p o  = K,a. 
Dashed curve: the maximum capture width to diameter ratio 1 / 4 .  

but tend to  decrease for p o  = 0.4; there is thus a ‘cross-over’ which occurs for u 
about 0.5. It is surprising to  note that when u is less than about 0.3 (not shown) the 
greatest values of C,/2a are no longer given by the smallest tuning wavenumber; 
the drawback is, of course, the larger amplitude ratios. 

The factor that prevents full advantage being taken of the small amplitude ratios 
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FIGURE 16. The amplitude ratio lQl/nup plotted against dimensionless wavenumber p = Ka for 
a duct of aspect ratio r = 0.6, for different values of tuning wavenumber p, = K,a. 
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FIGURE 17. The amplitude ratio IQI/nap plotted against dimensionless navenumber p = Ka for 
a duct of aspect ratio r = 0.4, for different values of tuning wavenumber po = K,a. 

and good performance, which occur when both v and ,uo are small, is the increasing 
steepness of the ‘cut-off’ a t  ,u about 0.25. This is a result of the dominance of gravita- 
tional stiffness a t  low frequency, and is a major reason why the introduction of anti- 
taper in a real device could be beneficial. Figure 18 shows an example of this, for a 
duct where the air/water interface has 25 % greater area than the mouth. There is a 
reduction in amplitude ratio resulting from the greater area, but also an increase in 
bandwiclth. 
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FIGURE 18. The capture width times wavenumber KCw plotted against dimensionless wave- 
number y = Ka for a duct of aspect ratio cr = 0.6, which is anti-tapered to  reduce the amplitude 
ratios. Curves are shown for different values of the tuning wavenumber po = Koa .  Dashed lines: 
the corresponding results for a straight duct. 

By contrast, the stiffness in the model of Thomas (1981) is a spring constant per- 
taining to the energy take-off mechanism, and this constant can be chosen to give 
resonance at a particular frequency when the duct length is fixed. This allows tuning 
at much lower wavenumbers, and hence produces greater values of capture width to 
duct diameter, than in the present case. 

Another thing that becomes evident is that  the value of duct length Z necessary to 
achieve the resonance condition (97a) is not, in general, strictly compatible with the 
implicit assumptions used in setting up the model. That is, in using the values of 
added mass and damping, derived for a straight duct, in the device of figure 1,  it has 
been assumed that the U-bend and air/water interface are several duct radii below 
the mouth. This is not, however, in serious conflict with the results (which give Z/a  
around 1 )  since incorporating taper or anti-taper in the duct allows resonance to be 
chosen at  a different design length. 

It should be noted that the long-wavelength limit (p --f 0) is inappropriate for the 
assumptions of this analysis, that  the sea bed and the lower duct were irrelevant when 
considering the device performance. I n  particular the amplitude ratio will not be 
unity a t  zero frequency, but will be some small positive quantity depending on the 
compressibility of the trapped air-column. 

14. Conclusion 
This paper has examined the Vickers twin oscillating water-column wave-energy 

device, modelling it as a single cylindrical duct. Linearized theory was used to set up 
the scattering and radiation problems. I n  part 1 the former problem was solved to 
high accuracy using a variational technique well suited to the simple boundary 
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conditions involved. This gave the pressure-amplification factor which was used in 
part 2 to  yield the added mass and added damping from the radiation problem by 
means of a reciprocal theorem, which takes advantage of the linearization. The 
results presented in $ 1 1  have shown major qualitative differences between two- and 
three-dimensional ducts. This is particularly important in the added mass, which is 
large and variable (unlike that for two dimensions), and so helps to produce good 
band-widths. 

Part 3 then derived the results for the capture width and amplitude ratio of the 
duct when absorbing energy, and curves of the device performance have been 
presented. It has been shown that, for certain aspect ratios and dimensionless 
tuning wavenumbers, it is possible for the duct to  absorb energy over a crest length 
greater than its diameter, within the validity of linear theory. 

Further work will consider a linear array of such devices interacting, since it has 
been shown in several recent theoretical and experimental investigations that the 
energy absorption characteristics of a device can be significantly enhanced by its 
mutual interaction with other devices. 
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